

Hardy-Weinberg Equilibrium

Evolution versus Genetic Equilibrium

Name:	Date:	Block:
-------	-------	--------

Hardy-Weinberg Principle

- 1. To clarify ______ evolutionary change operates, scientist find it helpful to determine when ____ __ takes place.
- Biologist asks:
 - Are there any conditions under which evolution will not occur?
 - Is there any way to recognize when that is the case?
- 2. The answer to those questions are provided by the Hardy-Weinberg principle, named after two researchers who independently proposed it when?

1. No Selection

2. No Mutation 3. No Migration

4. Large Population

5. Random Matina

Hardy-Weinberg Principle

- 3. What is the principle that states: allele frequencies in a population will **remain constant** unless one or more factors cause those frequencies to change.
- 4. The situation in which allele grequencies remain constant is called what?
- If the allele frequencies DO NOT change, the population will not evolve.

5 Assumptions of Hardy-Weinberg

- Under what conditions does the Hardy Weinberg principle hold?
- **PICTURED TO THE LEFT:** are the 5 conditions that are required to maintain genetic equilibrium from generation to generation.

5 Assumptions of Hardy-Weinberg

- In some populations, these conditions may be met or nearly met for long periods of time.
- 5. If however, the conditions are not met the genetic equilibrium will become what, and the population WILL evolve.

5 Assumptions of Hardy-Weinberg

***I NO NATURAL SELECTION**

- 6. All genotypes must have **equal probabilities** of what?
- 7. No phenotype can have a what, over another?
 - In other words, there can be no natural selection operating on the population

5 Assumptions of Hardy-Weinberg

*3 NO Migrations/Emigration

9. No migrations mean what?

10. Individuals may ______ into a population, therefore...there must be no movement of individuals into or out of a population.

11. In genetic terms, the what...must be kept the **same** and **separate** from others.

Genetic Bottleneck Effect Townse Pics Founder Effect

5 Assumptions of Hardy-Weinberg

***2 NO MUTATIONS**

8. If genes mutate from one form into another, what would happen causing allele frequencies to change?

Genetic Drift

BEFORE CONTINUING...

- Natural selection is not the only source of evolutionary change.
- 12. In small populations, an <u>allele</u> can become what?
 - The smaller a population, the farther the results may be from what the laws of probability predict.

Genetic Drift

- 13. This kind of random change in allele frequency is called what?
 - How does it take place?
 - 14. In small populations, individuals carry a particular allele may do what, than other individuals just **by chance.**
 - Over time, a series of <u>chance</u>
 <u>occurrences</u> of this type can cause an allele to become more common in a population.

Genetic Drift: Bottleneck Effect

18. Genetic _______, happens when some factor (disaster or catastrophic event) reduces the population to a small number and then the population recovers and expands again, but from a limited gene pool.

Genetic Drift: Founder Effect

- 15. Genetic drift may occur when a small population does what in a new habitat?
- 16. These individuals do what, than the larger population in which they came from.
- So if the population that they found will be genetically different than the original (parent) population.
- Alleles are in one or more founding individuals.
- 17. A situation in which allele frequencies change as a result of migration of a small subgroup of a population is known as what?

5 Assumptions of Hardy-Weinberg

***4 LARGE POPULATION**

 A large population size is important to maintaining genetic equilibrium.

19. What has less effect on large populations than on small ones?

5 Assumptions of Hardy-Weinberg

*****5 RANDOM MATING

20. All members of the population must have what?

- 21. This ensures that each individual has an equal chance of doing what?
 - Do natural populations not mate randomly? If so, non-random mating means that genes for those traits are not in equilibrium but under strong natural selection pressure.

Hardy-Weinberg Equilibrium

Where:

p= the frequency of allele _____

q= the frequency of allele _____

p² = the frequency of individual _____

q² = the frequency of individual _____

2pg = the frequency of individual

$$p^2 + 2pq + q^2 = 1$$

p + q = 1

Calculations need to equal as <u>close</u> <u>to 1</u> as possible