
Passive & Active Transport Target Check cell membrane & Transport review #2

	Name:	Date:	Block:
--	-------	-------	--------

Refer to the diagram to the right, which shows a cell membrane composed of a phospholipids bilayer with a channel protein. Each x represents the same type of molecule inside or outside the cell. *Facilitated diffusion moves this molecule across the cell membrane.*

- 1. In what direction will these molecules move and through which structure?
 - a. Into the cell through the transport protein
 - b. Into the cell through the phospholipid bilayer
 - c. Out of the cell through the transport protein
 - d. Out of the cell through the phospholipid bilayer


x = molecule

Refer to the transport mechanisms below for questions 2 and 3.

- 2. Which type of transport moves molecules **against** a concentration gradient?
 - a. I only
 - b. II only
 - c. II and IV only
 - d. II, III, IV only
 - e. I, II, III, and IV

Word Bank:

- I. Active Transport
- II. Diffusion
- III. Facilitated Diffusion
- IV. Osmosis
- 3. Which of the above types of transport moves molecules by **passive transport**?
 - a. I only
 - b. II only
 - c. II and IV only
 - d. II, III, IV, only
 - e. I, II, III, IV
- 4. Which process is illustrated to the **right**?
 - a. Diffusion of water into a cell
 - b. Endocytosis
 - c. Exocytosis
 - d. Facilitated diffusion

- 5. In **pure water**, a red blood cell from an animal will swell and burst, but a leaf cell from a **plant** will not. Which structure in the leaf cell is responsible for this difference?
 - a. Cell Membrane
 - b. Cell Wall
 - c. Mitochondria
 - d. Nucleus

Use the picture to the right to answer question 6.

6. The diagram to the right shows a **plant cell** before and after it is placed in a solution. After the cell is placed in the solution, <u>it changes shape</u>. Which table shows the initial concentration of solute in the cell and in the solution that would cause the cell to change shape as shown in the diagram?

Afte

A.	Location	Solute Concentration
	Inside cell	12%
	Outside cell	12%

В.	Location	Solute Concentration
	Inside cell	3%
	Outside cell	6%

C.	Location	Solute Concentration
	Inside cell	7%
	Outside cell	5%

D.	Location	Solute Concentration
	Inside cell	0%
	Outside cell	0%

Word Bank:

- A. Active transport
- B. Osmosis
- C. Facilitated diffusion
- D. Passive transport
- E. Exocytosis
- F. Phagocytosis

M	atcl	h t	he	fol	lowi	ing	terms	to	the	corı	ect	d	lef	in	iti	or	1:
---	------	-----	----	-----	------	-----	-------	----	-----	------	-----	---	-----	----	-----	----	----

What type transport is this? _____

7. _____ Active transport of materials **out** of the cell

8.	Water moves a	across a semi-permeable	membrane	G. Endocytosis H. diffusion				
9.	a specific type	of endocytosis		L				
10.	A molecule other than water is passively transported using a protein							
11.	Active transpo	Active transport of materials <u>into</u> the cell						
12.	A molecule oth	ner than water passively	moving in or out of	the cell				
13.	3 Movement across the membrane from <u>high</u> to <u>low</u> and with no energy used.							
14.	Movement acr	oss the membrane from	<u>low</u> to <u>high</u> and w	th energy used				
	the following terms to the Active Transport B.	•	C. Osmosis					
	Fresh water moves from a			·				
	concentration of 75%. Wh	at type of transport is th	is?					
16.	Transport proteins carry	glucose into a muscle ce	II					
17.	Carbon dioxide molecules there are only 25 units (no			lits into the bloodstream where				
18.	Sodium ions are pumped	out of red blood cell fro	m an area with 35 i e	ons to an area with 125 ions.				