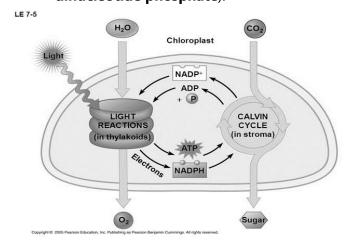
Photosynthesis Part 2 Notes

Light-Dependent Reactions and the Calvin Cycle


Name	e:				Date:	Block:
Ins		the Chlor	•			ce where?
2.	Chlor	oplast contain s	aclike photosyr	nthetic memb	oranes called?	
	>	Thylakoids a	re arranged in st	acks known a	s?	
3.	Prote what?	•	akoid membran	e organize chl	lorophyll and other pig	gments into clusters known a
>	These	e Photostems, a	are light-collectin	g units of chlo	oroplast.	
	•	Photosten	∩ I :are chlorop	hyll clusters	and pigments that use	e energy from light to
		reenergize th	e electrons.			
		Phototste	m II: the energ	gy from the lig	ght is absorbed by chlo	prophyll and transferred to
		electrons, and	d then these high	-energy elect	rons are passed on to	the electron transport chain.
	x _		•		•	PLAST below identify?
			X is	the:		
У			Y is t	the:		
			Z is	the:		
li	ight	(H ₂ O)	(CO ₂)			
en	nergy			5. Scienti	ist describe the reactio	ns of the Photostem in
last —		NADP		two parts:	:	
		light reactions ADP	Calvin) >		
koid — oma —		NADP	cycle			
				>		
				·		
		O ₂	glucose			

chlorop

region <u>outside</u> of the **thylakoid membrane**. (*What letter X is in the Chloroplast diagrams!*)

Electron Carriers

- 6. When sunlight excites ______ in _____, the electrons gain a **great** deal of energy!
- These excited, high-energy electrons require a **special carrier**.
 - Think of it as talking something hot out of the oven, would you want to use an oven mitt or do it with your bare hands? HOT HOT!
- Cells do the same thing, they use <u>electron carriers</u> to transport high-energy electrons from chlorophyll molecules.
- 7. A ______ is a compound that can **accept** a pair of **high-energy electrons** and **transfer** them along with most of their energy to another molecule.
- 8. What are the electron carriers themselves known as in the process of **electron transport**?
- 9. One of these carrier molecules is a compound known as ____ + (nicotinamide adenine dinucleotide phosphate).

- NADP• accepts and holds _____ high-energy electrons along with a _____ ion.
- This converts the NADP+ to _____, this is one way the energy of sunlight can be trapped in chemical forms.
- **NADPH** can then carry high-energy electrons produced by light absorption in chlorophyll to chemical reactions elsewhere in the cell.
- These high-energy electrons are used to help build molecules such as carbohydrates like for the cell.

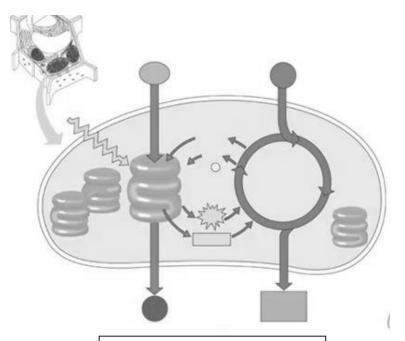
TURN IN YOUR TEXTBOOKS TO PAGE 211!

Light-Dependent Reactions

10.	require light. That is why plants need light to grow. The
	light-dependent reactions use energy from light to produce and
	The light-dependent reactions produce oxygen gas and convert and
	into the energy carriers ATP and NADPH .

The Calvin Cycle

LE 7-5


The ATP and NADPH formed by the light-dependent reactions (LDR) contain an abundance of chemical energy, but are not stable enough to store that energy for more than a few minutes. 11. During the ______ plants use energy that **ATP** and **NADPH** contain to build **high-energy compounds** that can be stored for a long time. The Calvin Cycle uses _____ and _____ from the LDR to produce The Calvin Cycle does not require light. [Remember: this happens in the stroma of the chloroplast] H₂O Chloroplast 6 **GGGG** NADP+ 6 ADP 4 12 NADPH LIGHT CYCLE 12 NADP+ (in stroma) (in thylakoids) 5-Carbon Molecules Regenerated Sugars and other compounds **Factors Affecting Photosynthesis** 12. How does water and Carbon Dioxide affect photosynthesis? 13. **Temperature** is another factor that affects photosynthesis. The enzymes of photosynthesis function best between _____ and _____ F Temperature above or below that range may damage the _______, slowing down the rate of photosynthesis.

14. ______: also affects photosynthesis as it can increase the rate of

photosynthesize regardless of the level of light intensity.

photosynthesis. At some point many plants have a ______ in which they

Take a moment and Label the photosynthetic process (in order) from I-9 below!

Low energy electrons are returned to the thylakoid to start all over again

The first stage the light dependent reaction occurs in the thylakoids

The high energy electrons and H^+ are combined with CO_2 (carbon dioxide) in 6 rotations to make $C_6H_{12}O_6$ (glucose)

High energy electrons and the H⁺ (hydrogen) from water are carried to the stroma to be used for the light-independent reaction (Calvin Cycle)

Chlorophyll inside of the chloroplast captures the light energy.

Sunlight hits the leaf

Water is split, giving off Oz (oxygen)

Glucose is the high energy carbohydrate produced at the end of photosynthesis

The second stage the light independent reaction or Calvin Cycle occurs in the stroma