| Date: | Block: | |-------|--------| | | Date: | # Non-Mendelian Inheritance ## Beyond Dominant and Recessive Alleles ## **Important Exceptions** - Despite the importance of Mendel's work, there are important exceptions to his principles - Not all genes show simple patterns of dominant and recessive alleles! | • | Inheritance is often more complicated because many | |---|--| | | genes have | #### Mendel's Pea Plants In your own words, why is his use of pea plants so significant? - Some alleles are NEITHER dominant nor recessive - Many traits are controlled by _____ alleles or multiple | | Seed
Shape | Seed
Color | Seed Coat
Color | Pod
Shape | Pod
Color | Flower
Position | Plant
Height | |----------------|---------------|---------------|--------------------|--------------|--------------|--|-----------------| | Р | Round
X | Yellow
X | Gray
W
X | Smooth | Green | Axial | Tall X | | | Wrinkled | Green | White | Constricted | Yellow | Terminal | Short | | F ₁ | 0 | © | 0 | 1 | 1 | The same of sa | Mer | | | Round | Yellow | Gray | Smooth | Green | Axial | Tall | ### **Incomplete Dominance** - Cases in which one allele is not completely dominant over another - In incomplete dominance, the ______ the two homozygous phenotypes - Ex. Red + White = Pink #### **Codominance** - Both alleles contribute to the phenotype __ - Unlike the blending of red and white in the heterozygous Four o' Clock roses, both colors appear ### **Multiple Alleles** - •More than _____ possible alleles exist in a population - This does not mean that an individual can have more than two alleles. It means that there are ______ _____ for those alleles • Rabbit coat color- Determined by a **SINGLE GENE**, but there are four different alleles Also, human hair color and blood type! ### **Polygenic Inheritance** - Traits controlled by two or more - Polygenic traits are produced by the _____ of several genes - Polygenic traits show a _____ of - · Ex. Human skin color - (also, human eye color and height!)